Cherenkov PID tracking thoughts

The need for $3\sigma K/\pi$ separation

The need for 3σ K/ π separation

requiring that the contribution from tracking is small

ie. it contributes to 10% of the total absolute resolution

```
0.4° mrad = 0.36° (RICH) + 0.17° (track)
1.1° mrad = 1.00° (RICH) + 0.48° (track)
0.7° mrad = 0.63° (RICH) + 0.30° (track)
```

The need for $3\sigma K/\pi$ separation

requiring that the contribution from tracking is small

ie, it contributes to 10% of the total absolute resolution

```
0.4^2 \text{ mrad} = 0.36^2 (RICH) + 0.17^2 (track)
1.1^2 \text{ mrad} = 1.00^2 (RICH) + 0.48^2 (track)
0.7^2 \text{ mrad} = 0.63^2 (RICH) + 0.30^2 (track)
```

these numbers are still ~ ok but I was wrong to think that tracking resolution does not scale with number of photons it does, Elke and Evaristo are right

Another simplified simulation exercise

reconstructed track direction vector

- \circ random gaussian smearing of angle wrt. truth direction $\theta_{
 m reco}$
- o random uniform rotation around axis of truth direction

Cherenkov photons direction vector

- N photons generated for each track
- \circ generated with fixed (Cherenkov) angle wrt. truth direction θ_{reco}
- random uniform rotation around axis of truth direction

reconstructed Cherenkov angle θ

- from scalar product between
 - photon direction vector (a)
 - reconstructed track direction vector (b)

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}}$$

Another simplified simulation exercise

reco direction

Another simplified simulation exercise

the value of A does not depend on the Cherenkov angle

the value of A does not depend on the tracking angular resolution

truth direction

One of the contract of the co

reco direction

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

contribution of tracking angular resolution to the reconstructed Cherenkov angle is

$$\sigma_{Ch,trk} = A \sigma_{trk} / \sqrt{N_{ph}}$$

with A ~ 0.7

Tracking requirement for dRICH

$$\sigma_{\rm Ch,trk}$$
 = 0.7 $\sigma_{\rm trk}$ / $\sqrt{N_{\rm ph}}$

requiring that the contribution from tracking is small

ie. it contributes to 10% of the total absolute resolution

the long-dashed curves are the more reasonable estimate of requirements from tracking

obtained by scaling short-dashed curves with the formula

using Frank-Tamm for $N_{photons}$ evolution anchored to N_{ph} = 20 at gas saturation N_{ph} = 7 at aerogel saturation

see slides of Chandra on calculations of multiple scattering contribution for various materials / thickness

What we would need from tracking WG

- \circ as a function of (η, p) and for different particle masses (e, π , K, p)
 - the most urgent/relevant is K
- at the various Cherenkov radiators
 - d-RICH: at the middle of the aerogel and of the gas radiators
 - m/pf-RICH: at the middle of the aerogel radiator
 - hp-DIRC: at the middle of the quartz bar
- possibly in two configurations
 - with and without a tracking layer behind
- with reasonable assumptions for material budget
 - support structures
 - detector materials, services and cables

is AC-LGAD TOF layer a good last tracking point for PID

o is TOF going to be readout in strips?

